
Proceedings of the 2018 IISE Annual Conference
K. Barker, D. Berry, C. Rainwater, eds.

The X-Supply Game

Sinan Salman
College of Technological Innovation
Zayed University, Abu Dhabi, UAE

Suzan Alaswad

College of Business
Zayed University, Abu Dhabi, UAE

Abstract

This paper introduces the X-Supply Game (XSG), a multi-player, team-based, online pedagogical game that simulates
on a small-scale system dynamics found in real supply chains. It challenges players to take on the roles of virtual
stations managers in a small supply chain. XSG is played in turns, in which players analyze weekly standings of their
stations and decide on orders to suppliers and shipments to customers, and simultaneously deal with multiple
competing objectives involving inventory, backorders, fulfillment rate, and transportation resource utilization. The
game highlights the inherent difficulty and the importance of tighter integration to achieve higher performance supply
chain wide. The XSG is influenced by previous supply chain simulation games, such as the Beer and Wood Supply
games, however, it extends on them to include the triple bottom line performance evaluation concept in addition to
game configurability and accessibility. For configurability, much of the game setup can be configured to create various
game scenarios, including different supply chain network topologies. As for accessibility, the game is designed to run
on most internet capable devices, and its source code is released under an open source license allowing its adoption
and extension by instructors around the world.

Keywords
Supply chain management, pedagogical team games, supply chain simulation

1. Introduction
System complexity in supply chain management (SCM) is a challenging concept to address in the classroom. Although
examples of basic SCM concepts are abundant in our everyday life and are relatable to students, true appreciation of
the complexity in supply chain systems and the interdependence found within it remains a challenge. Hence, educators
pursue different experiential learning techniques to bridge this gap. One of the most successfully used experiential
learning tools is the Beer game, a role-play team-based simulation game invented in the 1960s by Jay Forrester at MIT
while investigating system dynamics in SCM (see [1]). Since its initial introduction, the game was adapted into
multiple formats including a table game, different online games (e.g., [2]), and into other industries (e.g., the Wood
Supply Game [3]). For a full description of the Beer game, its history, and its use the reader is referred to [4].

This paper introduces a supply chain game simulator, the X-Supply Game (XSG), which builds on previous games
and extends on them in several aspects. First, much of the game setup can be configured to create various game
scenarios and supply chain designs. This enables the XSG to simulate most existing games, such as the Beer game
and the Wood supply game, via simple configurations, giving the XSG its name. Second, the simulator allows the
player to take on the shipping decision making it a part of their station management responsibilities. In contrast, most
other games either automate this decision or dictate its outcome through rules that require meeting all existing
customer demands using available material. Third, the XSG introduces the Triple Bottom Line (TBL), a performance
evaluation framework, to supply chain games where players explore decision tradeoffs impacting supply chain’s
performance as it relates to operational costs, customer satisfaction, and environmental footprint. Finally, the game’s
source code is released under an open source license allowing its adoption and extension by educators around the
world. These features enable educators to design game configurations to meet their topic and classroom needs. As
such, the XSG attempts to address the need for a game simulator tool that is flexible, extensible, and open to help
bring experiential learning to SCM classrooms. This article focuses on the design, implementation, capabilities, and

Salman and Alaswad

configurability of the XSG. The pedagogical use of the XSG in SCM education will be the focus of a subsequent
journal article.

The remainder of this paper is organized as follows. Section 2 presents the game simulator design, simulation logic,
and game configurability. Section 3 discusses the game user interface and its various reporting capabilities. Section 4
briefly overviews the implementation aspects of the simulator as a starting point for educators interested in extending
it further. Finally, Section 5 summarizes and concludes the article.

2. Game Design
The XSG is designed as a synchronized, multi-player, team-based, and online supply chain simulation game. In the
game, players connect to a central web server and take on the roles of virtual station managers in a small supply chain.
Every week players analyze their stations’ stats and decide on orders to suppliers and shipments to customers, while
managing multiple competing objectives. When deployed in classrooms, the game helps players realize through
experiential learning the complexities associated with managing even small supply chains. It also enables players to
explore and test strategies to improve supply chain performance.

The XSG utilizes a flexible simulation engine built using an object-oriented design. In the simulation engine, games
are dynamically built from two node types: stations and consumer demand points. Nodes are implemented as
independent objects, and once instantiated and configured they are connected to form a supply chain. This design
enables the simulator to model numerous supply chain network topologies (layers, multiple suppliers/customers per
node, multiple consumer demand points, etc.). Figure 1 illustrates three examples of supply chain games made possible
by this flexible simulator design. It should be noted that the XSG is capable of modeling virtually any supply chain
network topology given that it does not include closed loops, as such networks result in circular reference in the
simulator logic.

(a) Five-stations network (b) Wood supply game network (c) Beer game network

Figure 1: Network representation diagrams

Tables 1 and 2 list configuration parameters for both node types and illustrate how they are used to setup nodes
according to scenario requirements. Since parameters listed in the tables are node-instance specific, different instances
of the same node type may have different values, and therefore configurations. Using this design, much of the game
setup can be configured to create an expansive range of game scenarios, including different supply chain network
topologies, node throughput limits, supply chain delays, and operational costs, to name a few. In addition, two of the
station node configuration parameters (auto-shipping and auto-ordering) deal with station decision automation. Thus,
in the same simulation game, while shipping and ordering decisions can be managed manually in some stations, they
can also be completely or partially automated in other stations.

Allowing players to take on ordering and shipping decision responsibilities in the game simulates real supply chain
operations more closely and expose the players to some of its decision complexity and associated consequences. The
importance of enabling both decisions becomes evident when one considers the option of delaying material shipping
to optimize truck utilization. Since the XSG measures the environmental impact of player decisions via the number of
extraneous trucks used to ship units, minimizing this number will also minimize the environmental footprint.
Therefore, the XSG implements a TBL approach by challenging players to analyze the results of their decisions on
network’s operational costs (holding, backorder, and transportation costs), customer satisfaction (fulfillment rate), and

Salman and Alaswad

environmental footprint (number of extraneous trucks). Such tradeoffs help players appreciate the SCM challenge:
managing competing objectives while working with limited information, resources, and set timeframes.

Table 1: Parameters for consumer demand point nodes

Parameter Description Example
Name Unique demand point name Customer

Demand An array of weekly demand values (units) [98, 135, 176, 124]

Table 2: Parameters for station nodes
Parameter Description Example

Name Unique station name Retailer
Auto-shipping Use auto shipping logic False
Auto-ordering Use auto ordering logic True

Holding cost Cost of holding a unit of product for a week ($/unit/week) $1
Backorder cost Cost of not fulfilling a unit ordered for a week ($/unit/week) $2
Transport cost Cost of shipping one truckload ($/truck) $220 per truck
Transport size Truck capacity (units/truck) 200 units per truck

Shipping delay Shipment transit time between a supplier and a customer (weeks) 2 weeks
Ordering delay Processing time before a supplier receives a customer order (weeks) 1 weeks

Queue initial value Value used to initialize order/shipment queues for week 1 (units) 50 units
Initial inventory Inventory count at the start of simulation (units) 200 units

Safety stock Target safety stock; used in auto ordering logic (units) 50 units
Production minimum An array of weekly throughput minimums (units) [0, 0, 50, 50]
Production maximum An array of weekly throughput maximums (units) [200, 300, 300, 200]

To help the reader follow the game simulator logic, key concepts used in its design are explained here prior to the
logic presentation:

• The simulation includes two types of delays at each station: transportation/receiving and order processing.
These delays are modeled in the simulation engine using FIFO queues. Each week every queue releases an
entry and admits another. Therefore, the queue size is determined by the corresponding delay configuration
parameter, with one week delay equal to one queue position. In the below logic, transportation (i.e. receiving)
queues are denoted by 𝑅𝑄, order processing queues are denoted by 𝑂𝑄, and queue inserts and removals are
indicated using the 𝐴𝑑𝑑() and 𝑃𝑜𝑝() methods, respectively.

• If station 𝑖 is an end station node, i.e. a station with no suppliers, it will produce units demanded by its
customer(s) internally, and the receiving queue 𝑅𝑄 will simulate production time delay instead of the
transportation delay. In this case, the order processing queue 𝑂𝑄 simulates the internal order processing delay.

• If the order decision at a given station is manual, the function 𝐷𝑒𝑐𝑖𝑑𝑒𝑂𝑟𝑑𝑒𝑟𝑠() simply reads player’s input.
If the decision is automated, the function calculates 𝑇𝑜𝑡𝑎𝑙𝑂𝑟𝑑𝑒𝑟𝑠 = ∑ 𝐵𝑂88 + 𝑆𝑆 − 𝐼 − ∑ 𝑂𝑂== , and
allocates the result to suppliers such that: those with lower outstanding orders receive more unit orders. Note
that 𝐵𝑂8	is the number of units on backorder from customer 𝑐, 𝑆𝑆 is the safety stock level (units), 𝐼 is the
number of units available in inventory, and 𝑂𝑂= is the number of units on outstanding orders from supplier
𝑠.

• If the shipping decision at a given station is manual, the function 𝐷𝑒𝑐𝑖𝑑𝑒𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝑠() simply reads player’s
input. If the decision is automated, the function will attempt to satisfy all current and backorders if inventory
permits. When there is not enough inventory, customers with higher unit backorder counts will receive more
unit shipments.

• 𝑁 denote the sorted list of network nodes, such that later nodes can only supply earlier nodes and not vice
versa, assuming no closed loops exist. The sorted list enables the simulation logic to process orders in the
network sequentially from consumer demand points to end nodes.

• The simulation model requires initialization to correctly process week 1. Initial values for inventory levels,
queues, and outstanding orders are needed. These are set based on values found in Queue initial value and
Initial inventory parameters (see table 2).

Salman and Alaswad

Now we are in position to introduce the simulator pseudocode:

Game simulator main logic

Let:
𝑁		 be the sorted set of network nodes
𝑁CDE	 be the set of station nodes with no suppliers; AKA end station nodes
𝐼F 	 be the number of units available in inventory at node 𝑖
𝐵𝑂8 be the number of units on backorder from customer 𝑐
𝑂𝑂= be the number of units on outstanding orders from supplier 𝑠
𝑃𝑂8= be the number of units in a purchase order from customer 𝑐 to supplier 𝑠
𝑅= be the number of units received from supplier 𝑠
𝑆8 be the number of units shipped to customers 𝑐
𝑅𝑄GH be node 𝑥 receiving queue from supplier 𝑦 (transport/production delay)
𝑂𝑄F= be node 𝑖 ordering queue from supplier 𝑠 (processing delay)

Input: 𝐼, 𝑂𝑂,𝑅𝑄,	and	𝑂𝑄 initial values

1. For 𝑤𝑒𝑒𝑘 = 1 to 𝑤𝑒𝑒𝑘=RST
2. For i in N
3. Let c = set of {direct	customer	nodes	of	i}

4. Let s = set of bdirect	supplier	nodes	of	i,			if	i ∉ 	Nfghi,																																																		if	i ∈ 	Nfgh
j

5. Rl=	RQnl. Pop(), ∀s
6. OOl = OOl − Rl, ∀s
7. In = In + ∑ Rll
8. POnl = OQnl. Pop(), ∀s
9. Display weekly stats on station screen
10. Wait until all manual stations complete turn
11. For i in N
12. Let c = set of {direct	customer	nodes	of	i}

13. Let s = set of bdirect	supplier	nodes	of	i,			if	i ∉ 	Nfghi,																																																		if	i ∈ 	Nfgh
j

14. BOu = BOu + POun, ∀c
15. Su = DecideShipments(I, BO), ∀c
16. In = In − ∑ Suu
17. BOu = BOu − Su, ∀c
18. RQun. Add(Su), ∀c
19. POnl = DecideOrders(I, BO, OO), ∀s
20. OQnl. Add(POnl), ∀s
21. OOl = OOl + POnl, ∀s

The following describes the above logic. Lines 3 through 8 are the weekly initialization block; where unit shipments
are received from transportation delay queues (line 5), outstanding orders and inventory levels are adjusted with
received units (lines 6 and 7), and purchase orders are received from processing delay queues (line 8). Lines 3 and 4
define the set of supplier and customer nodes to the current node 𝑖. After all nodes complete weekly initialization,
weekly stats are displayed to players, and the simulation waits for players to enter their ordering and/or shipping
decisions (lines 9 and 10). When all players complete their turns, weekly processing starts (lines 12 through 21). The
following takes place in weekly processing: backorders are adjusted with new purchase orders (line 14), shipments
are decided (line 15), inventories are decreased by the number of shipped units (line 16), backorders are again adjusted
with the number of shipped units (line 17), shipments are entered into the transportation delay queue (line 18), orders
to suppliers are decided and entered into the order processing delay queue (lines 19 and 20), and finally outstanding
orders are adjusted with ordered units (line 21). Lines 12 and 13 perform the same function as lines 3 and 4.

Salman and Alaswad

3. Game User Interface and Outcomes Reporting
The XSG provides a clean user interface for players, and a variety of screens for educators to manage and monitor on-
going games, and report on game results for post-game debriefing discussions using a variety of interactive graphs.
Figure 2 shows a screenshot of the player screen, which is divided into upper and lower portions, with each including
three sections. The upper portion is reserved for informational data, including: game server status, game progress, and
Key Performance Indicators (KPI). The lower portion is reserved for player’s action, and includes an ordering section,
an inventory/backorder section, and a shipping section. The number of ordering and shipping entry boxes depends on
the automation of decisions in each station, as well as the number of customs and suppliers for each station.

Figure 2: Player screen

During the simulation and at its completion the game manager (i.e. educator) has access to a variety of reporting tools,
which include: a game summary table (Figure 3), a radar graph comparing performance objectives between stations
(Figure 4), and several graphs showing orders (Figure 5.a), inventory levels and backorders (Figure 5.b), nodes’
available units (𝐼 − 𝐵𝑂), unit deliveries, truck shipments, and extra shipments (Figure 5.c).

Using these reports, the game manager can run a constructive debriefing session where questions on performance
challenges and ways to address them can be discussed in an open investigative format. The educator may start the
session with a few open-ended questions on performance challenges, and then use the reports to guide the discussion.

Figure 3: Game summary table Figure 4: Stations performance comparison graph

4. Simulator Implementation
The XSG is designed for accessibility and extensibility; the game is designed to run on most internet capable devices
(e.g., laptops, tablets, and smart phones) without the need to install additional software. To that end, all simulation
logic is implemented on the server side, and only minimal user interface logic remains on the client (player) side. The
simulation engine is implemented using object-oriented Python, with web-server functions implemented using

Salman and Alaswad

Python’s Flask web-framework library. On the client side, only HTML, CSS, and JavaScript are used to ensure cross
platform compatibility.

The XSG source code is released under the GPLv3 open source license [5] allowing its adoption and extension by
educators around the world. Its project site can be found at [6] which includes a link to a public server hosting the
game to allow its direct adoption into classrooms without the burden of installation.

(a) Orders (b) Inventory and backorders (c) Extra shipments

Figure 5: KPI plots (top: network total, bottom: individual stations)

5. Conclusion
This paper introduces the XSG, an educational game that aims at teaching supply chain management using an
experiential approach. The game highlights the inherent difficulty and the importance of tighter integration and better
sharing of information to achieve higher performance in supply chains. The paper discusses the game’s design, major
concepts, and capabilities. The introduction of TBL objectives in the game invites a sustainability prospective into
this educational activity, and highlights the increased difficulty of managing supply chains when multiple competing
objectives are involved, as would be expected in a real-world scenario. The game design also allows for a great deal
of flexibility in constructing games in different network designs and parameter configurations to meet varying
educational needs in this area.

The XSG is still under active development to include additional features to facilitate its adoption by the widest range
of users. Future directions for the XSG may include multi-product supply chains and stochastic events (e.g., stochastic
demand, supply chain delays, and production capacities).

Acknowledgements
This work was supported by the Zayed University Research Cluster Fund (R16084).

References
1. Forrester, J. W., 1957, “Industrial Dynamics. A Major Breakthrough for Decision Makers,” Harvard Business

Review, 36(4), 37–66.
2. Sarkar, S., and Kumar, S., 2016, “Demonstrating the Effect of Supply Chain Disruptions through an Online Beer

Distribution Game*,” Decision Sciences Journal of Innovative Education, 14(1), 25–35.
3. D’Amours, S., Marier, P., Rönnqvist, M., Azouzi, R., and Fjeld, D., 2017, “The Online Wood Supply Game,”

INFORMS Transactions on Education, 18(1), 71–87.
4. Riemer, K., 2008, “The Beergame in Business-to-Business Ecommerce Courses-A Teaching Report,” BLED

2008 Proceedings, 1.
5. “GPLv3,” GNU GENERAL PUBLIC LICENSE [Online]. Available: https://www.gnu.org/licenses/gpl-

3.0.en.html. [Accessed: 07-Jan-2018].
6. Salman, S., XSG [Online]. Available: https://sinansalman.github.io/xsg/. [Accessed: 04-Mar-2018].

